
Engineering the
Technical Interview

Whitepaper March 2020

The average interview is inconsistent
and under-achieves on hiring targets

Many software engineers who interview candidates feel that
they know how to conduct an interview that will predict the
candidate’s performance in the onsite interview loop and on
the job. Yet, most teams fail to conduct enough interviews
with the quality and consistency required to hire the software
engineers they need, creating an Interview Gap.

This paper explores how companies can equip developers
and hiring teams with a framework for conducting
predictive technical interviews as part of a consistent,
structured process.

Improved interview experience that
reaches more of the hiring target

Organizations who streamline and structure the interviewing
and hiring process are able to gain visibility into a previously
opaque process, increase hiring yield, and improve candidate
experience.

CHALLENGE SOLUTIONS

RESULTS

Structuring the interviewing
and hiring process

Companies are able to reach hiring targets when they conduct
more interviews with structure and consistency while tracking
results and using feedback to optimize the process. They can
achieve this by professionalizing the interview and hiring
process through the implementation of six best practices that
make the process fair and highly predictable: defining hiring
competencies, improving interview formats and questions,
conducting interviews with standards for interviewer performance,
measuring candidate performance consistently, establishing
a clear hiring bar and analyzing hiring data to evolve research.

Only 38% of engineering
leaders are confident in hitting
their 2020 hiring targets

67% of engineering leaders
say ‘very few people at my
company know how to
conduct technical interviews

1

Engineering the technical interview
The promise of any interview is clear: to connect talent to opportunity. While companies need
the interview to build teams, candidates rely on it to take the next step in their career. Hiring
managers can develop an interviewing and hiring process that generates reliable outcomes by
using this framework and best practices:

Define and accurately assess hiring competencies
For each open software engineering role, your team should assign another developer to review
the job description and responsibilities, then align these elements to specific competencies.

To get a more predictive signal, interviewers and hiring teams should ask themselves:

- Are the competencies relevant to success on the job?

- Am I measuring each competency separately?

Establishing relevant competencies

The output of this process hinges on competencies that are predictive of job success. One
helpful way to determine what competencies to assign to a role is to think about how the
person is going to be evaluated in their review at the end of the year. Will the performance
review focus on broad aptitudes such as language skills, reading comprehension, US cultural
awareness or easily acquired knowledge such as search ability? For a senior software
engineering role, the competencies are more likely to include specific language skills such as
Java, demonstrated ability to understand and articulate business logic complexity, and
completing an architecture review.

It’s also imperative that candidates understand what competencies you’re assessing. What are
the mechanisms you have in place to clearly communicate to the candidate that they are being
assessed for code quality, optimality vs. speed, or the ability to deal with ambiguity? Hiring
managers should clearly define the competencies they’re looking for, and interviewers should
clearly articulate those competencies to candidates so they know whether to deliver complete
code or an outline, if a brute-force solution is good enough, or if they need to take the next
step to optimize it.

1. Define and accurately assess hiring competencies

2. Improve formats and questions

3. Conduct the interviews professionally

4. Measure candidate performance consistently

5. Establish a clear hiring bar

6. Analyze hiring data to evolve approach

Karat whitepaper

2

Measure each competency separately

Interviewers often use a single question to measure several competencies at once: Can this
person code quickly? Can they think out loud? Can they speed-read four paragraphs of English
text? Does the candidate know the rules to the same board games? This is detrimental because
it doesn’t isolate a variable to assess the competency and because it introduces noise through
measuring competencies that may not prove relevant to the job.

For example, candidates are often required to test their code in an interview. Asking them how
they would test it, as opposed to embedding it into a coding exercise, will isolate code testing
as a skill. This approach to isolation followed by evaluation boosts the value of each interview
segment and makes it possible to optimize the segments separately. It also enables
interviewers to exert greater control over measuring the desired competency.

Improve formats and questions

Non-structured interview questions may exclude
qualified candidates

One example of a non-structured interview question requires candidates to illustrate a diagram
of a well-known software system on the board. This question is so widely used it has become
an industry cliché. Unfortunately, the question fails to assess the skills of candidates who have
not been previously exposed to the definitions of the boxes and lines on the board. This can
introduce unintended bias for candidates from non-traditional backgrounds. Additionally, it tests
for a specific system design competency and it may not be relevant to the role.

The structure of the interview question matters as much as its objective of accurately
evaluating the candidate’s knowledge. A well-structured question will make clear to the
candidate what it expected of them and reduce the risk of false negatives.

Easily understood questions yield the most signal

Ambiguous questions are quite popular. They expect candidates to have a shared understanding
of a phrase that could have multiple interpretations but is also particular to a certain in-group,
like an Ivy League college. However, they don’t always reveal relevant skills. Instead, teams
should rely on easily understood questions to yield the most signal.

For example, an effective system-design question is based on a simple, concrete mechanism
that requires the candidate to scrutinize specific aspects of the system’s behavior. This way,
the expectations are clear and the number of possible answers is limited.

3

Karat whitepaper

Unbalanced interviews can give candidates an
unfair (dis)advantage

As illustrated in the diagram below, a seemingly ordinary multi-part interview question can
actually be unbalanced:

A candidate is asked to find the most common letter in a sentence as part of an introductory
question. In the follow-up, they must find the most common letter in sentence A that doesn’t
appear in sentence B. Two possible solutions to Question 1 are displayed. The two solutions
have roughly equal merit and, initially, there’s no compelling reason to choose one or the
other. But once faced with Question 2, the candidate who chose Solution B has a head start
over the one who chose Solution A.

While the example may seem contrived, practice has shown that most multi-part questions
produce unwanted downstream effects. This is why interviews should use questions that are
conceptually linked but don’t share implementation code.

Conduct the interviews professionally
Most teams haven’t made interviewing of software engineers a job dedicated to specific team
members. However, you may consider making it one in order to ensure that the success of the
interview relies on the same rigor as other engineering disciplines. Teams aiming to do this can
follow these steps to establish this role and conduct interviews professionally.

- Adhere to interview guidelines: Interview length, content,
communication, scoring rubrics, and approaches to completing write
ups are all structured and standardized

- Create defined, relevant, and transparent competencies: As
mentioned earlier in this paper, competencies should be defined and
aligned to each role, while questions assess one competency at a
time, and ambiguity is avoided—this serves to increase signal in each
interview

- Establish mechanisms for accountability: Just like code review,
interviews should be quality checked—this can also help reduce bias

4

Question 1

Find the most common
letter in a given sentence

Question 2

Efficiently find the most
common letter in Sentence
A that does not appear in

Sentence B

Solution A: Sort the
letter in the sentence
and iterate through it
once

Solution B: Build a
frequency map for the
letters in the sentence
and choose the
maximum value.

Karat whitepaper

5

Lastly, a professionally conducted technical interview ought to be able to put candidates at
ease. Teams that select interviewers with a baseline of soft skills and interest in interviewing
can add a level of empathy and kindness that reduces anxiety for candidates and increase
signal. Consider exposing interviewers to the candidate experience—especially if they are
more tenured.

Measure candidate performance consistently
Companies often use a wide spectrum of subjective attributes and grades to evaluate
candidates, but without a structured scoring rubric, feedback becomes impossible to
aggregate and compare from interviewer to interviewer. Structured scoring rubrics aligned
to competencies allow for more consistent reporting around areas like solution optimality,
completion, handholding, and debugging.

Establish a clear hiring bar
Establishing a clear hiring bar requires evaluating outcomes of the scoring rubric and mapping
them to the results of each onsite loop. When similar competencies are identified and
candidate success similarly demonstrated, then the hiring bar is well represented in the
technical interview and the onsite.

To identify a clear hiring bar, interviewers should work together to determine what level of
performance is necessary in each competency for job success; and how to arrive at this
decision from the output of each interview. Many companies struggle with evaluating interview
performance because, much like the interview, round tables, debriefs and hiring committees
are often opaque. As a result, documenting the conclusions reached and the standards by
which they are reached can be difficult and time consuming. For this reason, it ’s crucial to
introduce a meaningful inquiry about these processes on a routine basis.

Understanding your hiring bar relative to the market will help you gauge whether or not it is
too high, which can lead to rejecting candidates who can be successful in the role. This can
be done by monitoring and evaluating the career path of the rejected candidates. Are peer
companies snapping them up? Or worse, companies considered to have a higher bar? Answers
to these questions will reveal if the hiring bar is needlessly filtering candidates out. An accurately
calibrated hiring bar will filter more candidates in.

Karat whitepaper

Analyze hiring data to evolve approach
At this final stage, interviewers’ only task is to apply structured data so they can optimize
the process based on the evaluation of outcomes. An interview process with enough
data structure to draw meaningful conclusions enables hiring managers to make
optimizations unavailable to their competitors.

The value of assigning someone to ensure that the data is consistent and regularly
tracked reduces pathological data quality in the applicant tracking system (ATS). Questions
such as, “Did the candidate reject you or did you reject them?” can be telling of the
defects in the interview process. It ’s not unusual to find a data quality issue in 40% or
more of the records in an organization’s ATS.

Key takeaways

Give interviewing an owner.
By assigning an engineer to optimize each part of the interview you create
accountability for the consistency of that section.

Be intentional and clear with questions.
Clearly identify the competencies that matter to the role, communicate those
competencies to the candidate, and measure them one at a time.

Centralize interviewing and training.
Inconsistent interviewers can negatively impact your hiring yield and candidate
experience. Don’t just train on the general guidelines of interviewing—educate
interviewers about the specific questions they should ask and establish consistent
standards.

Find a way to audit your interviews.
Even if you can’t record your interviews, use shadows, and give feedback to
non-predictive interviewers or those who don’t follow a structure. Scrutinize
your questions rigorously and discard the ones with too many flaws.

Build your process for data collection from day one.
Interviewing processes with intention and structure from can be optimized for a
variety of desirable characteristics, like speed, candidate experience, and predictiveness.

Ready to discover more?

To talk to Karat about how we deliver technical interviews
that are consistently high in quality, visit us at karat.com

Karat whitepaper

